Visualization Code Example
Below is an example of code for one of our graphs. The output of this code outlines the relationship between the average prices of coastal and inland homes within a given zip code compared to sea level.
#4
# Calculate mean price for each GMSL_noGIA value and group
mean_prices = zip_sea.groupby(['GMSL_noGIA', 'Inland/Coastal'])['Price'].mean().reset_index()
# Plot the scatterplot
plt.figure(figsize=(12, 6))
sns.scatterplot(x="GMSL_noGIA", y="Price", hue="Inland/Coastal", data=mean_prices)
plt.title("Mean Price vs GMSL_noGIA for Coastal and Inland Properties")
# Add linear regression lines for each group
coastal_data = mean_prices[mean_prices["Inland/Coastal"] == 1]
inland_data = mean_prices[mean_prices["Inland/Coastal"] == 0]
sns.regplot(x="GMSL_noGIA", y="Price", data=inland_data, scatter=False, label="Inland")
sns.regplot(x="GMSL_noGIA", y="Price", data=coastal_data, scatter=False, label="Coastal")
plt.legend()
plt.savefig("graphs/mean_price_vs_GMSL_noGIA.png")
plt.show()